

NAG C Library Function Document

nag_dstein (f08jkc)

1 Purpose

nag_dstein (f08jkc) computes the eigenvectors of a real symmetric tridiagonal matrix corresponding to specified eigenvalues, by inverse iteration.

2 Specification

```
#include <nag.h>
#include <nagf08.h>

void nag_dstein (Nag_OrderType order, Integer n, const double d[],
    const double e[], Integer m, const double w[], const Integer iblock[],
    const Integer isplit[], double z[], Integer pdz, Integer ifailv[], NagError *fail)
```

3 Description

nag_dstein (f08jkc) computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified eigenvalues, by inverse iteration (see Jessup and Ipsen (1992)). It is designed to be used in particular after the specified eigenvalues have been computed by nag_dstebz (f08jjc) with **rank** = Nag_ByBlock, but may also be used when the eigenvalues have been computed by other functions in Chapters f08 or f02.

If T has been formed by reduction of a full real symmetric matrix A to tridiagonal form, then eigenvectors of T may be transformed to eigenvectors of A by a call to nag_dormtr (f08fgc) or nag_dopmtr (f08ggc).

nag_dstebz (f08jjc) determines whether the matrix T splits into block diagonal form:

$$T = \begin{pmatrix} T_1 & & & \\ & T_2 & & \\ & & \ddots & \\ & & & T_p \end{pmatrix}$$

and passes details of the block structure to this function in the arrays **iblock** and **isplit**. This function can then take advantage of the block structure by performing inverse iteration on each block T_i separately, which is more efficient than using the whole matrix.

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

Jessup E and Ipsen I C F (1992) Improving the accuracy of inverse iteration *SIAM J. Sci. Statist. Comput.* **13** 550–572

5 Arguments

1: **order** – Nag_OrderType *Input*

On entry: the **order** argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2:	n – Integer	<i>Input</i>
<i>On entry:</i> n , the order of the matrix T .		
<i>Constraint:</i> $n \geq 0$.		
3:	d [<i>dim</i>] – const double	<i>Input</i>
Note: the dimension, <i>dim</i> , of the array d must be at least $\max(1, n)$.		
<i>On entry:</i> the diagonal elements of the tridiagonal matrix T .		
4:	e [<i>dim</i>] – const double	<i>Input</i>
Note: the dimension, <i>dim</i> , of the array e must be at least $\max(1, n - 1)$.		
<i>On entry:</i> the off-diagonal elements of the tridiagonal matrix T .		
5:	m – Integer	<i>Input</i>
<i>On entry:</i> m , the number of eigenvectors to be returned.		
<i>Constraint:</i> $0 \leq m \leq n$.		
6:	w [<i>dim</i>] – const double	<i>Input</i>
Note: the dimension, <i>dim</i> , of the array w must be at least $\max(1, n)$.		
<i>On entry:</i> the eigenvalues of the tridiagonal matrix T stored in w [0] to w [<i>m</i>], as returned by nag_dstebz (f08jjc) with rank = Nag_ByBlock. Eigenvalues associated with the first sub-matrix must be supplied first, in non-decreasing order; then those associated with the second sub-matrix, again in non-decreasing order; and so on.		
<i>Constraint:</i> $w[i] \leq w[i + 1]$ if iblock [<i>i</i>] = iblock [<i>i</i> + 1], for $i = 0, 1, \dots, m - 2$.		
7:	iblock [<i>dim</i>] – const Integer	<i>Input</i>
Note: the dimension, <i>dim</i> , of the array iblock must be at least $\max(1, n)$.		
<i>On entry:</i> the first m elements must contain the sub-matrix indices associated with the specified eigenvalues, as returned by nag_dstebz (f08jjc) with rank = Nag_ByBlock. If the eigenvalues were not computed by nag_dstebz (f08jjc) with rank = Nag_ByBlock, set iblock [<i>i</i> - 1] to 1 for $i = 1, 2, \dots, m$.		
<i>Constraint:</i> $iblock[i] \leq iblock[i + 1]$, for $i = 0, 1, \dots, m - 2$.		
8:	isplit [<i>dim</i>] – const Integer	<i>Input</i>
Note: the dimension, <i>dim</i> , of the array isplit must be at least $\max(1, n)$.		
<i>On entry:</i> the points at which T breaks up into sub-matrices, as returned by nag_dstebz (f08jjc) with rank = Nag_ByBlock. If the eigenvalues were not computed by nag_dstebz (f08jjc) with rank = Nag_ByBlock, set isplit [0] to n .		
9:	z [<i>dim</i>] – double	<i>Output</i>
Note: the dimension, <i>dim</i> , of the array z must be at least		
$\max(1, pdz \times m)$ when order = Nag_ColMajor;		
$\max(1, pdz \times n)$ when order = Nag_RowMajor.		
If order = Nag_ColMajor, the (i, j) th element of the matrix Z is stored in z [(<i>j</i> - 1) \times pdz + <i>i</i> - 1].		
If order = Nag_RowMajor, the (i, j) th element of the matrix Z is stored in z [(<i>i</i> - 1) \times pdz + <i>j</i> - 1].		
<i>On exit:</i> the m eigenvectors, stored as columns of Z ; the i th column corresponds to the i th specified eigenvalue, unless fail.code > 0 (in which case see Section 6).		

10: **pdz** – Integer *Input*

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **z**.

Constraints:

if **order** = **Nag_ColMajor**, **pdz** $\geq \max(1, \mathbf{n})$;
 if **order** = **Nag_RowMajor**, **pdz** $\geq \max(1, \mathbf{m})$.

11: **ifailv**[*dim*] – Integer *Output*

Note: the dimension, *dim*, of the array **ifailv** must be at least $\max(1, \mathbf{m})$.

On exit: if **fail.code** = *i* > 0, the first *i* elements of **ifailv** contain the indices of any eigenvectors which have failed to converge. The rest of the first **m** elements of **ifailv** are set to 0.

12: **fail** – **NagError** * *Input/Output*

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument $\langle \text{value} \rangle$ had an illegal value.

NE_CONSTRAINT

On entry, **m** = $\langle \text{value} \rangle$, **iblock**[*i*]**iblock**[*i* + 1] = $\langle \text{value} \rangle$, **w**[*i*]**w**[*i* + 1] = $\langle \text{value} \rangle$.
 Constraint: if **iblock**[*i*] = **iblock**[*i* + 1], **w**[*i*] $\leq \mathbf{w}[i + 1]$, for *i* = 0, …, **m** – 2.

NE_CONVERGENCE

$\langle \text{value} \rangle$ eigenvectors (as indicated by argument **ifailv**) each failed to converge in 5 iterations. The current iterate after 5 iterations is stored in the corresponding column of **z**.

NE_INT

On entry, **m** = $\langle \text{value} \rangle$.
 Constraint: $\max(1, \mathbf{m}) > 0$.

On entry, **n** = $\langle \text{value} \rangle$.
 Constraint: **n** ≥ 0 .

On entry, **pdz** = $\langle \text{value} \rangle$.
 Constraint: **pdz** > 0.

NE_INT_2

On entry, **m** = $\langle \text{value} \rangle$, **n** = $\langle \text{value} \rangle$.
 Constraint: $0 \leq \mathbf{m} \leq \mathbf{n}$.

On entry, **pdz** = $\langle \text{value} \rangle$, **m** = $\langle \text{value} \rangle$.
 Constraint: **pdz** $\geq \max(1, \mathbf{m})$.

On entry, **pdz** = $\langle \text{value} \rangle$, **n** = $\langle \text{value} \rangle$.
 Constraint: **pdz** $\geq \max(1, \mathbf{n})$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Each computed eigenvector z_i is the exact eigenvector of a nearby matrix $A + E_i$, such that

$$\|E_i\| = O(\epsilon)\|A\|,$$

where ϵ is the **machine precision**. Hence the residual is small:

$$\|Az_i - \lambda_i z_i\| = O(\epsilon)\|A\|.$$

However, a set of eigenvectors computed by this function may not be orthogonal to so high a degree of accuracy as those computed by nag_dsteqr (f08jec).

8 Further Comments

The complex analogue of this function is nag_zstein (f08jxc).

9 Example

See Section 9 of the document for nag_dormtr (f08fgc).
